IDS Datashare — webAPI

Introduction
The following document will describe briefly the webAPI that IDS has made available for use by its
customers to dynamically retrieve vehicle and associated data directly from the IDS servers.

Technology
The IDS webAPI is built using Microsoft ASP.Net Web API platform, which allows the creation of

HTTP based web services that are accessible from a whole host of computer languages.

The API should be considered to be a RESTful API see:
http://en.wikipedia.org/wiki/Representational state transfer

The only HTTP verb accepted by the API will be the GET verb.

Initially data returned from API calls can either be returned in JSON/JSONP format or XML format,
though over time the list of supported formats may also be extended. The Web API will perform
content negotiation — please see http://www.asp.net/web-api/overview/formats-and-model-
binding/content-negotiation for more details.

It is intended that the API is easily callable from client languages such as C#.Net, JavaScript, PHP —
other languages are likely possible but the 3 mentioned are where most testing will be performed.

HTTP Messages —i.e. Calling the API

In its simplest form, calling the API is as simple as constructing a URL, however to keep the URL
‘pure’ you may choose to embed some URL fields within the HTTP request header as additional fields
— specifically fields such as Customerld, are better suited to be embedded within the request header
as additional fields, than passed on the URL — though both will be supported by the API.

* At the time of writing this document, it has been discovered that passing X-Customerld as a custom
HTTP request header is getting lost when sending the request by jQuery on a remote host — and
therefore at this moment in time, the only reliable way to pass your customer id is as part of the URL
-- Hopefully this issue will get addressed shortly *

Success or failure of the API call is communicated back in the HTTP Response object:
Likely response codes will be:

200 OK - Call was successful

401 Unauthorised — Either Customerld was not supplied or was incorrect - this may also
be returned if an attempt was made to call APl functionality to which you are not
currently subscribed for.

404 Not Found — Data could not be found i.e. if looking for a VRM and it wasn’t found

There may be other codes that are implemented, these will be noted where they become possible
return status codes — for a full list of potential status codes and their meanings refer to:
http://en.wikipedia.org/wiki/List of HTTP status codes

Servers

IDS will maintain two public facing web servers, one is a LIVE server, and will be the server you
connect to under normal circumstances — this will always serve the latest vehicle data, and will have
the most stable code.

The second server is a TEST server, it's data may not be the very latest (it will not be too far behind,
and whilst no active testing is being conducted will also be up to date), the second server will
primarily be used to showcase and test new functionality — and where our customers will be invited
to test any changed functionality against.

Both servers under normal circumstances will be 100% available for business use during normal
business hours; during the early hours of the morning between 3am-6am of each business day
service availability may be limited or even none-functioning, as our servers will be having the daily
data upgrades.

IDS’s vehicle data currently contains over 125,000 vehicles, and we are constantly bringing new
vehicles online, updating information on vehicles as soon as manufacturers make us aware of this
data; and our web service should also serve up the latest and most current data — we aim to have
this performed when most UK businesses are closed, and so when your dealers sign on and start to
make use of our web services the following morning, new data is available.

IDS DataShare - webAPI

Search

Registration Mark: m Search

MADDO4ES
v: MAOWOAZZS18MSFIFCEGFO00
v: MAS 185 SHPIM
MA MAZDA 5- 20M55R16 V
MAYT Oid & 50R HATCH model range T 20M55R1E V
w6 20M55R16 V

v &5D00rHatch 185

. Manual
= 5
Hatehback
;4 Cylinder inLine
Front Wheel
1184
1758
185

19.9694
88,2008

“request”: {
“swarch™: "MABEEIE4”,

The ‘TEST’ server (at the time of writing this document) is showing off new features, showing 3
different methods of drilling down to a vehicle.

Depending upon your needs, your sites design you may choose to follow any of these drill-down
methods, feel free to inspect the code behind the web page; or if your needs are different use the
various webAPI calls to construct your own drill-down methods.

API Calls

This list is not exhaustive, and is likely to get added to over time. Some API calls may not be
available, due to your subscription model. In the URL’s specified below please replace {server} with
the server or IP address you are advised to use. Where return data is documented below, it’s
shown in JSON format — take into account that data can be received in various other formats via
content negotiation.

&Customer I d=XXXXXXXX =XXXX = XXX X = XXXX = XXXXXXXXXXXX

If you are not using jQuery, you may be able to send the Customer Id as part of a customer request
header like this:

X-Customerld : XXXXXXXX=XXXX=XXXX=XXXX=XXXXXXXXXXXX
This would be preferred however, at the time of writing this document there appears to be an issue
when sending the X-Customerld custom header via jQuery to remote server (seems to work fine on

our own server) — hopefully this will be resolved shortly.

We may also adopt IP-Address security, in a way to aid authentication — but again at the time of
writing we have not developed this.

All calls must be via HTTPS for added security.

{server}/Datashare/api/vehicle? VRM=xxxxxxxx

Search for a vehicle by VRM (where xxxxxxxx is the actual VRM), expected status codes are 200 —
vehicle was found, 404 — vehicle was not found.

Vehicle may not be found for a number of reasons, and in these cases you should use dropdowns to
prompt the user to try to identify the vehicle by, manufacturer, model and variant.

If the vehicle is found, initial vehicle data is returned to help identify the vehicle matched the format
of the return data will be:

{
“request”: {
“search”: //search term used
“type”: // type of search performed “VRM~”
3
“data”: {
“dateOfVehicleRegistration”:
“dvia’:
“dateOfManufacture™:
“dateOfV5C”:
“vehicleldentificationNumber”:
“vehicleldentificationNumberEnding™:
“engineNumber”:
“vehicleColour™:
“lastColourDate™:
“previousColours”:
“priorUse”:
“manufacturer”:
“model™:
“body”’:
“bodyClass”:
“cherishedTransferMarker”:
3
“mvris”: {
“manufacturer”:
“model”:
“modelVariantName™:
“engineSize”:
“cc”’:
“bhp”:
“doors™:
“body”’:
“cabType™:
““gearboxType™:
“axles™:
“Ffuel”:

. 1, . .
“idscode™: // 8 digit IDS vehicle code
“fleetnetCode”:

“fFleetnetEdi™:
“capCode™:
“manufacturerCode”:
“manufacturerName”:
“modelCode”:
“modelDescription™:
“modelGroup™:
“vehicleDescription”:
“vehicleTreeDescription”:
“modelYear”:
“dateOfIntroduction™:
“endOfProduction”:
“fuelType”:
“fuelDelivery”:
“transmissionType”:
“doors™:

“bodyStyle”:

“engineConfigurationType”:
“driveTpe”:

“bhp”:
oo
“co2emissions”:
¥,
“links”: {
“technicalUrl”:

“serviceUrl”:
“imageUrl”:

“status”: {
“code™:
“statusText”:

}
}

As you will see from the above response data is essentially made of four parts:

e The ‘request’ object which summarises what was just requested and how that search was
satisfied.

e The ‘data’ object which will contain all of the relevant data for the search. In the case of a
VRM search it contains the found vehicle, and sufficient fields to identify the vehicle —
perhaps display on a web page for confirmation by the user.

e The ‘links’ object which will contain any relevant URL’'s for further information on this
vehicle.

e The ‘status’ object which contains HTTP ‘code’ and ‘statusText’ for the success or failure of
the call — this object should ALWAYS be inspected, status.code =200 = success.

All web API calls will return response data with these four named parts — ‘request’, ‘data’ ‘links’ and
‘status’ — though the content of each part will be relevant to the type of call being made.

NOTE: FleetNet & CAP field in the above returned data will only be populated if you have the
appropriate FleetNet and CAP licenses.

NOTE: DVLA and MVRIS sections will only return data in individual fields if enabled in your
subscription.

“idscode” field is the unique identity of the vehicle within IDS data, and is therefore the key code
that will need to be used for other calls to obtain more information, such as service information or
technical information about this individual vehicle.

VRM searches may fail for a variety of reasons, here are a few to consider:

e Vehicle is too old — IDS maintain vehicle data upto 10yrs old, if the vehicle is older than this,
then we are unable to match the VRM to an IDS vehicle.

o Vehicle is too new — With extremely newly registered vehicles, it may well be that the DVLA
have not updated their records, or our VRM lookup supplier hasn’t managed to update their
records, and therefore we have no records to match off against an IDS vehicle. You will find
however, that if you drilldown through the IDS vehicles, we will be maintaining this vehicle,
our vehicle data is up to date, as we are advised many months before a vehicle goes onto
release.

e Bad records — there are a few instances where bad record keeping by the DVLA has resulted
in failed searches — each VRM search iterates through a number of different linked
databases held by the DVLA, MVRIS and CDL —if a link is broken in any one of these systems,
then the vehicle cannot be matched.

All said though, the VRM matching process is extremely quick and accurate and aims to match a high
proportion of vehicles by their VRM.

In instances where a VRM search does not find a vehicle, the user will need to be prompted via a
series of drop downs, selecting manufacturer, model and vehicle variant, the following 3 web API
calls will allow you to achieve this.

{server}/Datashare/api/manufacturers
This will return a list of manufacturers, and their associated manufacturer 2-digit codes.

Optional parameters to this call are:
e pageSize=nn - This allows you to limit the maximum number of results returned

e page=nn - This in combination with pageSize allows you to select a specific page of
results — these two parameters are common on API calls where multiple results can be
received.

Data will be returned in the following format:

{
“request”: {
“search”: //search term used
“type”: // type of search performed “Manufacturers’
3
“data”: {
“manufacturers”: // array of manufacturers
“manufacturerCode”:
“manufacturerName”:
“modelsUrl”:
}
N
“links”: {
“nextPage”:
“prevPage”:
“status”: {
“code”:
“statusText”:
}
}

The nextPage & prevPage links provide convenient URL’s to navigate to the next/previous page of
manufacturers. Though for the quantity of manufacturers it would be likely all manufacturers would
be requested in one hit. If there isn’t a previous page (because either all data was requested, or this
is the first page) then the prevPage url will be empty/null. The same is true for nextPage.

Within ‘data’ object this will contain a list of ‘manufacturers’, an array of manufacturer object —
which include the manufacturers 2-digit code, it's name that will be displayed to the user, and a URL
that can be used to list the models of that manufacturer. Note: The modelsURL will not include any
paging information or customerlD’s; so these will need to be appended in the normal way.

{server}/Datashare/api/models?manufacturer=xx
This will return a list of Models for a given manufacturer — where xx is the 2-digit manufacturer code.

Optional parameters to this call are:
e pageSize=nn - This allows you to limit the maximum number of results returned

e page=nn - This in combination with pageSize allows you to select a specific page of
results.

Data will be returned in the following format:

{
“request”: {
“search”: //search term used
“type”: // type of search performed “Models”
¥
“data”: {
“models”: // array of models
“modelCode™:
“modelDescription”:
“vehiclesUrl™:
“model”:
“fuelType”:
“transmissionType”:
b
.
“links”: {
“nextPage”:
“prevPage’:
¥,
“status”: {
“code”:
“statusText”:
b

Within ‘data’ object this will contain a list of ‘models’, an array of model object — which include the
model 2-digit code, it’s name that will be displayed to the user, and a URL that can be used to list the
vehicles within that model.

Model descriptions that are returned here are essentially a ‘composite’ of Model + fuelType +
transmissionType.

{server}/Datashare/api/vehicles?model=xxxx

This will return a list of vehicles for the given model code. Depending upon the model this could be a

list of several hundred vehicles; so it is probably ideal to page this data.

Optional parameters to this call are:

e pageSize=nn - This allows you to limit the maximum number of results returned
e page=nn - This in combination with pageSize allows you to select a specific page of

results.

Data will be returned in the following format:

{
“request”: {
“search”: //search term used
“type”: // type of search performed “Vehicles”
3
“data’: {
“vehicles”: // array of vehicles
“idscode™: // 8 digit IDS vehicle code
“fleetnetCode”:
“FleetnetEdi™:
“capCode™:
“manufacturerCode”:
“manufacturerName”:
“modelCode™:
“modelDescription”:
“modelGroup™:
“vehicleDescription”:
“modelYear”:
“dateOfIntroduction™:
“endOfProduction”:
“fuelType”:
“fuelDelivery”:
“transmissionType”:
“doors™:
“bodyStyle”:
“engineConfigurationType”:
“driveTpe”:
“bhp™:
“cc”:
“co2emissions”:
“links”: {
“technicalurl”:
“serviceUrl”:
“imageUrl”:
}
}
“links”: {
“nextPage”:
“prevPage”:
T
“status”: {
“code”:
“statusText”:
b
b

Within the “data” object there is an array of “vehicles”, each vehicle object contains relevant
vehicle codes and data to help identify the vehicle. Each individual vehicle returned will also contain

various links for further information on the vehicle.

{server}/Datashare/api/services?idscode=xxxxxxxx
Retrieve Servicing information for the specified vehicle. This service data is RAW service data

Data will be returned in the following format:

{

“request’: {
“search”: //search term used
“type”: // type of search performed “Services’

3

“data’: {
“iIdscode™: // 8 digit IDS vehicle code
“FirstServiceMileage”:
“FirstServiceMonths”:
“initialServiceMileage”:
“initialServiceMonths”:
“subsequentServiceMileage”:
“subsequentServiceMonths™:
“FirstServiceMileage2”:
“FirstServiceMonths2™:
“initialServiceMileage2”:
“initialServiceMonths2”:
“subsequentServiceMileage2”:
“subsequentServiceMonths2”:
“milesToRegime2™:
“oilCapacity”:
“labourRate”:
“servicelndicatorl”:
“servicelndicator2”:
“serviceRegimes”: // 1 or 2 service regimes

“regime”: // 1 or 2)
“services”: // array of services

“mileage”:
“partsCost™:
“labourTime”:

{

serviceltems”: // array of service items

“mileage”:

“months”:

“serviceltemCode™:
“serviceltemDescription”:
“serviceltemincludedInCost”:
“labourTime”:

“itemCost”:

“everyTime”:

“type”:

.
“links”: {
“vehicleUrl”:
“technicalUrl”:
“imageUrl”:

¥
“status”: {
“code”:
“statusText”:

}

{server}/Datashare/api/vehicle?idscode=xxxxxxxx

Search for a vehicle by IDS code (where xxxxxxxx is the actual IDS code), expected status codes are
200 — vehicle was found, 404 — vehicle was not found.

If the vehicle is found, initial vehicle data is returned to help identify the vehicle matched, the
format of the return data will be:

{

“request”: {

“search”: //search term used
“type”: // type of search performed “Vehicle’

“data’: {
“idscode™: // 8 digit IDS vehicle code
“fleetnetCode”:
“fleetnetEdi”:
“capCode™:
“manufacturerCode™:
“manufacturerName”:
“modelCode™:
“modelDescription”:
“modelGroup™:
“vehicleDescription”:
“vehicleTreeDescription”:
“modelYear”:
“dateOfIntroduction”:
“endOfProduction”:
“fuelType™:
“fuelDelivery”:
“transmissionType”:
“doors”:
“bodyStyle”:
“engineConfigurationType™:
“driveTpe”:
“bhp”’:
“cc’:
“co2emissions”:

N
“links”: {
“technicalurl”:
“serviceUrl”:
“imageUrl™:

¥
“status”: {
“code”:
“statusText”:

}

{server}/Datashare/api/technical?idscode=xxxxxxxx
Retrieve all technical vehicle data for a given vehicle (using it’s IDS code).

Data will be returned in the following format:

{
“request’: {
“search”: //search term used
“type”: // type of search performed “Technical’
“data’: {

“idscode™: // 8 digit IDS vehicle code
“mpgUrban”:
“mpgExtraUrban™:
“mpgCombined”:
“torque”:
“torqueRpm”:
“length”:
“width”:
“height”:
“grossVehicleWeight”:
“unladenWeight™:
“towingWeightBraked”:
“towingWeightUnbraked™:
“wheelbase™:
“groundClearance”:
“bootCapacity”:
“tankSize”:
“maximumSpeed”:
“acceleration0tol00kph™:
“accelleration0to60mph™:
“frontBrakes™:
“rearBrakes”:
“frontTyres™:
“rearTyres”:
“spareTyre”:
“seats”:
“‘gears”:
“axles”:
“powerPS™:
“powerkKw:
“euroEmission”:
“InsuranceGroup™:

.
“links”: {
“vehicleUrl”:
“servicelrl”:
“imageUrl”:
¥
“status”: {
“code”:
“statusText”:

}

{server}/Datashare/api/modelranges?manufacturer=XX

Retrieve a list of Model Ranges for the specified Manufacturer (by model ranges, this is ‘A3’, ‘A4’,
‘A5’, ‘A6’, etc for Audi as an example)

Data will be returned in the following format:

{
“request”: {
“search”: //search term used
“type”: // type of search performed “ModelRanges”
“data’: {’
modelRanges:{//Array of ModelRanges
“mode lRangeCode”:
“modelRangeDescription”:
I
“links”: {
“nextPage”:
“prevPage™:
“status”: {
“code”:
“statusText”:
3
}

This call can be seen on the sample web page, within the 2" drill-down method:

A3 v

Select Model Range

21
AZ

=
£4

L4 Executive

II

onon

. |

Ly Ch

in

R el o T I SR R =

=1

Lo T o R O == L 7
ok L Do Lo
oy s
I’t‘ﬁ
o,
1]
4
4

{server}/Datashare/api/modelyears?modelRangeCode=nn

Retrieve a list of Years for a selected Model Range.

Data will be returned in the following format:

{
“request”: {
“search”: //search term used
“type”: // type of search performed “ModelYears’
“data’: ’
modelYears:{ //Array of ModelYears
“yearCode”:
“year”:
I
“links”: {
“nextPage”:
“prevPage™:
“status”: {
“code”:
“statusText”:
3
}

This call can be seen on the sample web page, within the 2" drill-down method:

Select Year ¥

Select Year
2002
2004
2005
20086
2007
2008
2009
2010

;%]

(]
[i

|

k3 B3 B3 RS
[e e

|
b D RS

{server}/Datashare/api/vehicles?modelYearCode=xxxx-xxxx

Retrieve a list of vehicles for a given modelYearCode — this will return an array of vehicles, with
sufficient information to identify the required vehicle from.

Data will be returned in the following format:

{
“request”: {
“search”: //search term used
“type”: // type of search performed “Vehicles”

“data’: {
“vehicles”: // array of vehicles

“idscode™: // 8 digit IDS vehicle code
“fFleetnetCode”:
“fleetnetEdi”:
“capCode™:
“manufacturerCode™:
“manufacturerName”:
“modelCode™:
“modelDescription”:
“modelGroup™:
“vehicleDescription”:
“modelYear™:
“dateOfIntroduction”:
“endOfProduction™:
“fuelType”:
“fuelDelivery”:
“transmissionType”:
“doors”:
“bodyStyle”:
“engineConfigurationType™:
“driveTpe”:
“bhp”:
“cc”:
“co2emissions”:
“links”: {
“technicalUrl”
“servicelrl”:
“imageUrl™:

3
I
“links”: {
“nextPage”:
“prevPage”:
“status”: {

“code™:
“statusText”:

}

This call can be seen on the sample web page, within the 2" drill-down method:

Select Specification v

Select Specification -
43 3 Door Hatch 1.6 fAuto

43 3 Door Hatch 1.6 5SE

43 3 Door Hatch 1.6 5E Auto

43 3 Door Hatch 1.6 Sport

43 3 Door Hatch 1.6 Sport Auto

43 3 Door Hatch 1.8

L3 3 Door Hatch 1.8 Ruto -
43 3 Door Hatch 1.8 5SE

43 3 Door Hatch 1.8 5E Auto

43 3 Door Hatech 1.8 Sport

43 3 Door Hatch 1.8 Sport futo

43 3 Door Hatch 1.8 T Quattro Sport

43 3 Door Hatch 1.8 T Sport

43 3 Door Hatch 1.8 T Sport Tiptronic

A3 3 Door Hatch 1.9 5E TDI 100

43 3 Door Hatech 1.9 S5E TDI 100 Tiptronic

A3 3 Door Hatch 1.9 5E TDI 130

43 3 Door Hatch 1.9 Sport TDI 100 b

For the purpose of this dropdown, I’'m using the vehicleDescription property.

{server}/Datashare/api/modelyearranges?manufacturer=XX

Retrieve a list of Model Year Ranges for the specified manufacturer.

Data will be returned in the following format:

{
“request”: {
“search”: //search term used
“type”: // type of search performed “ModelYearRanges
“data’: ’
modelYearRanges:{ // Array of ModelYearRanges
“modelYearRangeCode”:
“modelYearRange”:
.
“links”: {
“nextPage™:
“prevPage™:
X,
“status”: {
“code”:
“statusText”:
3
}

This call can be seen on the sample web page, within the 3™ drill-down method:

Select Model Range T I Select Deri

Select Model Range

A1 Hatchback (2010-14)

AZ? Hatchback (2002-05)

A3 Hatchback (2003-08)

A3 Hatchback (2008-12)

A3 Hatchback (2010-12)

A3 Hatchback (2012-13)

L3 Saloon (2013-)

A3 Soft-Top Convertible/Cabriolet (2008-13)
A3 S5oft-Top Convertible/Cabriolet (2013-14)
A3 Soft-Top Convertible/Cabriolet (2014-)
L4 Estate (1999-01)

L4 Estate (2001-04)

L4 Estate (2002-08)

L4 Estate (2008-12)

L4 Estate (2009-11)

L4 Estate (2011-13)

L4 Estate (2011-13)

L4 Estate (2012-13) -

{server}/Datashare/api/modelderivatives?modelYearRangeCode=x
XXXXX

Retrieve a list of Model Year Derivatives for the specified modelYearRangeCode.

Data will be returned in the following format:

{
“request’: {
“search”: //search term used
“type”: // type of search performed “ModelDerivatives’
“data”: ’
modelDerivatives:{ // Array of ModelDerivatives
“derivativeCode™:
“derivativeDescription”:
I &
“links”: {
“nextPage”:
“prevPage™:
X
“status”: {
“code”:
“statusText”:
}

}

This call can be seen on the sample web page, within the 3" drill-down method:
Select Derivatiwve v
Select Derivatiwve
43 3 Door Hatch 1.&

A3 3 Door Hatch 1.6 Luto

A3 3 Door Hatch 1.6 5E

L3 3 Door Hatch 1.6 5E futo

L3 3 Door Hatch 1.6 Sport

43 3 Door Hatch 1.6 Sport Auto

43 3 Door Hatch 1.8

43 3 Door Hatch 1.8 Auto

43 3 Door Hatch 1.8 5E

L3 3 Door Hatch 1.8 5E fAuto

43 3 Door Hatch 1.8 Sport

L3 3 Door Hatch 1.8 Sport Auto

L3 3 Door Hatch 1.8 T Quattro Sport

L3 3 Door Hatch 1.8 T Sportc

L3 3 Door Hatch 1.8 T Sport Auto

L3 3 Door Hatch 1.8 T Sport Tiptronic

L3 3 Door Hatch 1.5 SE TDI 100

L3 3 Door Hatch 1.9 S5E TDI 100 Tiptronic
L3 3 Door Hatch 1.5 S5E TDI 130 -

{server}/Datashare/api/vehicles?derivativeCode=xxxxxx

Retrieve a list of vehicles for the specified DerivativeCode

Data will be returned in the following format:

{
“request”: {
“search”: //search term used
“type”: // type of search performed “Vehicles”

P

“data”:
“vehicles”: // array of vehicles

“idscode™: // 8 digit IDS vehicle code
“fleetnetCode™:
“fleetnetEdi”:
“capCode™:
“manufacturerCode”:
“manufacturerName”:
“modelCode™:
“modelDescription™:
“modelGroup™:
“vehicleDescription”:
“modelYear”:
“dateOfIntroduction”:
“endOfProduction”:
“fuelType”:
“fuelDelivery”:
“transmissionType”:
“doors”:
“bodyStyle”:
“engineConfigurationType”:
“driveTpe”:
“bhp” :
“cc’:
“co2emissions™:
“links”: {
“technicalUrl”
“servicelrl”:
“imageUrl”:

}

N
“links”: {
“nextPage”:
“prevPage™:

“status”: {

“code”:
“statusText”:

}
}

This call can be seen on the sample web page, within the 3™ drill-down method:

Select Year r

For the purpose of this dropdown, I’'m using the modelYear property.

